

Received July 0142

Volume 7 Number 2, 2014

THE METHODS AND GOALS OF TEACHING SORTING

ALGORITHMS IN PUBLIC EDUCATION

Péter Bernát

Abstract: The topic of sorting algorithms is a pleasant subject of informatics education. Not only

is it so because the notion of sorting is well known from our everyday life, but also because as an

algorithm task, whether we expect naive or practical solutions, it is easy to define and demonstrate.

In my paper I will present some of the possible methods and goals of teaching sorting algorithms

in the primary and the secondary school context. Some of the applicable demonstration and

collaborative methods will be listed and illustrated with examples available on the internet. Next to

defining the teaching goals offered by the specific methods, I will also make suggestions which

methods are optimal for a given teaching phase.

Key words: primary and secondary school education; sorting algorithms; demonstration method;

collaborating method

1. Introduction

The topic of sorting algorithms is a happy subject of informatics education. Not only is it so because

the notion of sorting is well known from our everyday life, but also because as an algorithm task,

whether we expect naive or practical solutions, it is easy to define and demonstrate.

Public education usually focuses on comparative sorting algorithms. In each of their steps such

algorithms determine which of the two given elements has to precede the other in the outcome. Next to

less efficient simple algorithms, like selection sort, insertion sort, and bubble sort, efficient algorithms,

like quicksort, merge sort, Shell sort, and heapsort, are examples [1, 2].

Two age groups deal with the above topic in school. In early primary school, children learn to

implement some of the sorting algorithms and compare them from the perspective of efficiency (still

without computers). Secondary school students, however, move on to describing and realizing sorting

algorithms with the computer, along with comparing them in detail.

The demonstration method and the collaborative method are plausible ways of teaching sorting

algorithms. Demonstration is a tool to present and examine objects, phenomena, and processes, while

collaboration is a method to learn and practice an activity [3]. Algorithms can be considered both as

processes to scrutinize if their implementer is another person or the computer, and as activities to

master if the implementers are ourselves.

Learning programming does not only imply getting familiar with the basic notions of programming.

Just like other subjects, programming develops students’ thinking capacity [4], along with their social

skills. When teaching sorting algorithms, similar goals can be achieved.

The aim of my article is to categorize some of the applicable demonstration methods and collaborative

methods, illustrating them with examples available on the internet. Next to defining the teaching goals

offered by the specific methods, I will also make suggestions which methods are optimal for a given

teaching phase.

2 Péter Bernát

Acta Didactica Napocensia, ISSN 2065-1430

2. Teaching the implementation of sorting algorithms

Primary school kids learn about the basics of the computer, such as sorting algorithms, through games,

still without computers [5]. Their task is to understand and execute some of the sorting algorithms,

while comparing them regarding their efficiency.

2.1. Demonstration and collaboration with objects

The most suitable way to teach a couple of algorithms to this age group is the use of objects. To sort

objects from a given perspective is good because it is close to everyday reality, on the one hand, and,

because the activity-based learning is specifically fit for kids, on the other hand.

It is worth to choose objects, which can be lined up according to their weight. Since their comparison

is possible only with the use of a two-pan balance, we will pay enough attention on the basic step of

comparative settlements, and it will be easier to keep track of the number of comparisons. As objects

we can apply identical capsules filled with different amount of coins, and the balances can be

borrowed from the chemistry lab. If we glue the appropriate numbers to the bottom of the objects, later

the order can be easily checked.

Figure 1. The method of sorting and selecting weights [5]

Here is a possible scenario [5]. The students, after entering into groups of four, receive 8 objects and a

balance. The teacher tells them that they are supposed to compare the weight of two objects only in

each step. As a warm-up task, we can ask them to determine the heavier of two objects and the

heaviest of all objects. We can discuss how many steps need to be made to solve the latter task. Then

we can ask them to sort 3 objects by weight and, if they manage, to sort all objects.

Figure 2. Sorting weights with quicksort algorithm [5]

After the experiments, we can teach them a simple sorting algorithm and an efficient algorithm. We

can choose for example selection sort (figure 1) or quicksort (figure 2). If the students count the

necessary comparisons in the first and the second case, they will realize that the sorting methods are of

different efficiency. If there is more interest and time, further algorithms can be demonstrated, such as

insertion sort and merge sort.

The methods and goals of teaching sorting algorithms in public education 3

Volume 7 Number 2, 2014

2.2. Executing educational goals

During these sessions, students get closer to important notions, such as algorithm, sorting (listing

elements in a given order), efficiency (the number of steps to solve the same problem), and recursion

(”divide and conquer”), without even noticing. Understanding, implementing, and comparing the

demonstrated algorithms, that is, the attempts of the students, develop their thinking abilities. What is

more, since the tasks are solved in groups, they even improve the social skills of the students.

3. Teaching the computer-based execution of sorting algorithms

In secondary school education, special attention is paid to programming frequently used algorithms,

such as sorting algorithms. Students are expected to understand, describe, code, and examine the

efficiency of different sorting algorithms.

3.1. Demonstration with pictures

Visual demonstrations characteristically serve to make the main steps of the sorting algorithm visible.

However, unlike the strategies, the basic steps of the method remain hidden.

The images used for a simple algorithm illustrate the list through the steps of the external loop. It is

well visible on figure 3, demonstrating selection sort, insertion sort, and bubble sort together, that the

list is divided into an organized and an unorganized part, with an end result of putting each element

into the organized section. It can be examined whether the elements change their location before and

after they get into the organized part.

Figure 3. The demonstration of selection, insertion, and bubble sort with pictures [6]

Pictures similar to these can be made with computer programs as well, which means that even random

or special lists can be viewed in the case of different algorithms. It is worth to assign different colors

to the different elements so to make movement and idleness conspicuous (figure 4).

4 Péter Bernát

Acta Didactica Napocensia, ISSN 2065-1430

Figure 4. The demostration of insertion sort with a program (own program)

The pictures made for efficient recursive sorting algorithms depict the lists through the specific levels

of the recursion. On figure 5, illustrating quicksort and merge sort, we can see that both algorithms

split the initial list into smaller and smaller ones, until we are left with one-item lists, which then get

merged several times to form the ordered final list. Notice that for quicksort the process of splitting is

more complex than merging, while for merge sort it is the other way around [7].

Figure 5. The demonstration of quicksort (own picture) and merge sort [6] with pictures

To discover the recursion in these methods, we need to observe the demonstrative pictures not from an

up-down angle but rather ”inside out.” For example, the highest level of recursion is given by the first

step and last step together. We split the initial list into two smaller lists, we sort them, then, by

merging the two parts we arrive to the solution. Recursively, we continue and sort each of the two

parts with the same method. As the lowest level of the recursion, we will find the one-item lists, which

need no further sorting.

The methods and goals of teaching sorting algorithms in public education 5

Volume 7 Number 2, 2014

3.2. Demostration with animations

Animations can be divided into two groups. The members of the first group demonstrate the operation

of sorting algorithms. While they display each of the basic steps of such algorithms, the essence of the

methods remains in the dark.

The operation of the algorithm is easier to follow if we can pause the animation, change its speed, or

even reverse it; or if we can highlight the active items with arrows, colors, or other forms of marking.

Some of the interactive animations can visualize the operation of the algorithm with random lists,

which allows for the display of different cases.

Figure 6. The demonstration of selection sort with animation [8]

The webpage with the tell-tale title Visualization of Data Structures and Algorithms [8] aims to

demonstrate the most frequently used data structures and algorithms through interactive animations of

a standard interface. It offers animations for selection sort, bubble sort, quicksort, and merge sort.

With the help of the animations, we can sort arbitrary lists (the items are displayed as columns of

different height), set the speed of play-mode, and even jump back and forth between the different steps

by using a slider (figure 6).

The other group of animations visualizes the efficiency of sorting algorithms by presenting sorting

processes next to each other. The compared processes inform us about the efficiency either of one sole

sorting algorithm in the context of different lists, or of different sorting algorithms in the context of

comparable lists. We can even set the animations to count the comparisons and copies during their

operation.

The webpage of Sorting Algorithm Animations [9] demonstrates the efficiency of eight sorting

algorithms: insertion sort, selection sort, bubble sort, Shell sort, merge sort, heapsort, and two versions

of quicksort. The algorithms are checked with four different initial conditions: with random lists,

nearly sorted lists, reversed lists, and lists with few unique keys. The 32 animations can be played all

at once, but we can also select and observe the behavior of one given sorting algorithm or one given

type of lists.

6 Péter Bernát

Acta Didactica Napocensia, ISSN 2065-1430

Figure 7. Demonstration of the efficiency of insertion sort with animation [9]

Animations presenting the operation of one single sorting algorithm in the context of different lists

(figure 7) facilitate a more thorough understanding of the algorithm, on the one hand. On the other,

they enable us to examine whether its functioning changes with special lists compared to a random

list. It is for example a significant question if a given sorting algorithm can finish with a nearly sorted

list earlier.

However, if we use the animations to demostrate the sorting of a specific list by different algorithms,

we can easily decide which of the sorting algorithms is the best to use if this given type of list has to

be sorted [10]. Suprisingly, the so-called efficient algorithms perform rather poorly with certain lists.

Finally, if we play all 32 animations together, we can draw a useful conclusion, namely, that there is

no such thing as best sorting algorithm that would perform best in each of the cases.

Although the program running on the above webpage fails to count the comparisons and copies, we

can easily make programs (not neceassarily with animations) that are able to determine these values in

the case of different lists or different algorithms. The screenshot in figure 8 shows how a program

compares the operation of three simple algorithms with a randomly generated list.

Figure 8. Measuring the efficiency of selection, insertion, and bubble sort with own program

3.3. Collaboration with simulation programs

In simulation programs made for sorting algorithms, the algorithms are executed by the users.

Although these programs involve less motor and sensory organs compared to real experimentation, the

advantages are that they do not require physical tools or preparation, and everyone is able to work on

their own. In addition, they can provide extra services next to the usual supervision: the animations

can check the progress of the students immediately or even teach them algorithm.

The methods and goals of teaching sorting algorithms in public education 7

Volume 7 Number 2, 2014

Figure 9. Sorting in a simulation program (own program) [11]

The above figure demonstrates a program I made to visualize a possible classroom task. The simple

algorithms can be tried with a 6-item list. To display or change the items, we can use mobile arrows

marked as i and j, traditional loop counters in algorithms and programs. Next to these, the min marker

can be applied with selection sort, while the double arrow, for the jth and j+1st item, goes with bubble

sort. The eye displays all the items so we can check the solution easily, whereas a click on the cube

provides us with a new random list.

Figure 10. Sorting in the simulation program of the Algo-rythmics’s webpage [12]

We will find a more serious application on the Algo-rythmics webpage [12], renowned for its videos

presenting sorting algorithms through folk dancing. Insertion sort, selection sort, bubble sort,

quicksort, and Shell sort are demonstrated and offered for trial on the webpage (figure 10). In

interactive mode, we can select two elements and decide if we want to compare or exchange them.

The program warns us when we are about to make a wrong step according to the rules of the given

algorithm. With one single click, the item values can be hidden so that comparison can become

necessary. If we get stuck, the Help button assists us to get back on track.

8 Péter Bernát

Acta Didactica Napocensia, ISSN 2065-1430

3.4. Executing educational goals

The computer-based implementation of sorting algorithms may require the application of some kind of

a data structure, the organization of nested loops, and the production of a recursive procedure. Sorting

algorithms are among the most complex programming tasks; their description and coding are mentally

demanding challenges, for which we can offer assistance tailored to the abilities of the students.

4. Conclusions

We can choose from a plethora of methods how to teach sorting algorithms. We need to consider not

only the specific needs of our students, but also the peculiarities of the different methods: each one fits

a given phase of the learning process best. In early primary school, objects of different weight

facilitate students to understand, practice, and examine the efficiency of algorithms. In secondary

school, however, other methods work better for the comprehension, description, and coding of the

algorithm, let alone for its efficiency check.

To understand the essence of algorithms, pictures seem to be the most efficient tools, because they

visualize only the most important parts. For the comprehension of the details, however, animations,

which display all the steps, appear more adequate. For checking students’ comprehension, before they

start describing or coding an algorithm, simulation programs are the best; in addition, they can be

effective tools for practicing the specific algorithms. Algorithm description and coding are best

promoted by animations that display loop counters and markers typically used in the algorithm. Lastly,

for efficiency check we can use animations and programs that were designed for this specific purpose.

Although my article focused on visual and motor methods used specifically for teaching sorting

algorithms, it would be useful to consider and aim for such methods in the entire programming

education [13]. As the Chinese proverb reminds us: ”I hear and I forget. I see and I remember. I do

and I understand.”

References

[1] Szlávi, P.; Zsakó, L. (2008): Módszeres programozás: Programozási tételek (Methodic

programming: Programming theses), Mikrológia 19, ELTE IK, Budapest

[2] Rónyai, L.; Ivanyos, G.; Szabó, R. (2005): Algoritmusok (Algorithms), Typotex, Budapest

[3] Falus, I. (2006): Didaktika – Elméleti alapok a tanítás tanulásához (Didactics – Theoretical

basics to teaching learning), Nemzeti Tankönyvkiadó, Budapest

[4] Szlávi, P.; Zsakó, L. (2012): ICT competences – Algorithmic thinking, Acta Didactica

Napocensia, Vol. 5. No. 2., pp. 10

[5] Bell, T.; Witten, I. H.; Fellows, M.: Computer Science Unplugged, An enrichment and

extension programme for primary-aged children

http://csunplugged.org/sites/default/files/activity_pdfs_full/unpluggedTeachersMar2010-

USletter.pdf [05/20/2014]

[6] Sorting Algorithms Section 3, C.Eng 213 Data Structures

http://cow.ceng.metu.edu.tr/Courses/download_courseFile.php?id=5451 [05/20/2014]

[7] Kátai, Z. (2007): Algoritmusok felülnézetből (Overview to algorithms), Cluj-Napoca: Scientia,

ISBN 978-973-7953-74-2

[8] Visualization of Data Structures and Algorithms

http://rosemarietan.com/fyp [05/20/2014]

[9] Sorting Algorithm Animations

http://www.sorting-algorithms.com [05/20/2014]

The methods and goals of teaching sorting algorithms in public education 9

Volume 7 Number 2, 2014

[10] Kátai, Z. (2006): Módszerek és eszközök az informatikaoktatás hatékonyságának növelésére

(Methods and tools for developing the efficiency of teaching informatics), Doktori (PhD)

értekezés, Debreceni Egyetem TTK

[11] Bernát, P.: Cserés rendezések (Exchange sorting)

http://scratch.mit.edu/projects/87514 [05/20/2014]

[12] Algo-rythmics

http://algo-rythmics.ms.sapientia.ro [05/20/2014]

[13] Szlávi, P.; Zsakó, L. (2003): Methods of teaching programming. Teaching Mathematics and

Computer Science 1, No. 2, pp. 247-258

Authors

Péter Bernát, Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary, e-mail:

bernatp@inf.elte.hu

10 Péter Bernát

Acta Didactica Napocensia, ISSN 2065-1430

